Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
1.
Biomater Sci ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38711336

RESUMO

Developing biomaterials capable of promoting bone regeneration in bacteria-infected sites is of utmost urgency for periodontal disease therapies. Here we produce a hybrid hydrogel by integrating CuS nanoparticles (CuSNPs), which could kill bacteria through photothermal therapy (PTT) triggered by a near infrared (NIR) light, and a gelatin methacryloyl (GelMA) hydrogel, which is injectable and biocompatible. Specifically, CuSNPs were precipitated by chitosan (CS) firstly, then grafted with methacrylic anhydride (MA) to form CuSNP@CS-MA, which was photo-crosslinked with GelMA to synthesize hybrid hydrogels (GelMA/CuSNP). The hybrid hydrogels exhibited a broad-spectrum antibacterial property that could be spatiotemprorally manipulated through applying a NIR light. Their mechanical properties were adjustable by controlling the concentration of CuSNPs, enabling the hydrogels to become more adapted to the oral diseases. Meanwhile, the hybrid hydrogels showed good cytocompatibility in vitro and improved hemostasis in vivo. Moreover, they accelerated alveolar osteogenesis and vascular genesis, successfully treating periodontis in four weeks in a rat model. GelMA/CuSNP hydrogels showed a broad-spectrum sterilization ability via PTT in vitro and outstanding antibacterial property in vivo, suggesting that the hybrid hydrogels could function in the challenging, bacteria-rich, oral environment. Such injectable hybrid hydrogels, capable of achieving both facilitated osteogenesis and NIR-inducible sterilization, represent a new biomaterial for treating periodontitis.

2.
Biosens Bioelectron ; 258: 116335, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38710144

RESUMO

The detection of antibiotics is crucial for safeguarding the environment, ensuring food safety, and promoting human health. However, developing a rapid, convenient, low-cost, and sensitive method for antibiotic detection presents significant challenges. Herein, an aptamer-free biosensor was successfully constructed using upconversion nanoparticles (UCNPs) coated with silk fibroin (SF), based on Förster resonance energy transfer (FRET) and the charge-transfer effect, for detecting roxithromycin (RXM). A synergistic FRET efficiency was achieved by utilizing alizarin red and RXM complexes as energy acceptors, with UCNP as the energy donor, and immobilizing an ultrathin SF protein corona within 10 nm. The biosensor detects RXM in deionized water with high sensitivity primarily through monolayer adsorption, with a detection range of 1.0 nM-141.6 nM and a detection limit as low as 0.68 nM. The performance of this biosensor was compared with the ultra-performance liquid chromatography-mass spectrometry (UPLC-MS/MS) method for detecting antibiotics in river water separately and a strong correlation between the two methods was observed. The biosensor exhibited long-term stability in aqueous solutions (up to 60 d) with no attenuation of fluorescence intensity. Furthermore, the biosensor's applicability extended to the highly sensitive detection of other antibiotics, such as azithromycin. This study introduces a low-cost, eco-friendly, and highly sensitive method for antibiotic detection, with broad potential for future applications in environmental, healthcare, and food-related fields.

3.
Biomaterials ; 308: 122569, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38626556

RESUMO

In subunit vaccines, aluminum salts (Alum) are commonly used as adjuvants, but with limited cellular immune responses. To overcome this limitation, CpG oligodeoxynucleotides (ODNs) have been used in combination with Alum. However, current combined usage of Alum and CpG is limited to linear mixtures, and the underlying interaction mechanism between CpG and Alum is not well understood. Thus, we propose to chemically conjugate Alum nanoparticles and CpG (with 5' or 3' end exposed) to design combination adjuvants. Our study demonstrates that compared to the 3'-end exposure, the 5'-end exposure of CpG in combination adjuvants (Al-CpG-5') enhances the activation of bone-marrow derived dendritic cells (BMDCs) and promotes Th1 and Th2 cytokine secretion. We used the SARS-CoV-2 receptor binding domain (RBD) and hepatitis B surface antigen (HBsAg) as model antigens to demonstrate that Al-CpG-5' enhanced antigen-specific antibody production and upregulated cytotoxic T lymphocyte markers. Additionally, Al-CpG-5' allows for coordinated adaptive immune responses even at lower doses of both CpG ODNs and HBsAg antigens, and enhances lymph node transport of antigens and activation of dendritic cells, promoting Tfh cell differentiation and B cell activation. Our novel Alum-CPG strategy points the way towards broadening the use of nanoadjuvants for both prophylactic and therapeutic vaccines.


Assuntos
Adjuvantes Imunológicos , Hidróxido de Alumínio , Óxido de Alumínio , Células Dendríticas , Antígenos de Superfície da Hepatite B , Nanopartículas , Oligodesoxirribonucleotídeos , Adjuvantes Imunológicos/farmacologia , Animais , Nanopartículas/química , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/farmacologia , Antígenos de Superfície da Hepatite B/imunologia , Antígenos de Superfície da Hepatite B/metabolismo , Hidróxido de Alumínio/química , Hidróxido de Alumínio/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Feminino , Citocinas/metabolismo , Compostos de Alúmen/química , Compostos de Alúmen/farmacologia
4.
ACS Appl Mater Interfaces ; 16(13): 15798-15808, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38507684

RESUMO

Sunscreens play a crucial role in protecting the skin from ultraviolet (UV) damage. However, present commercial sunscreens have a tendency to generate free radicals in the UV window, resulting in serious inflammatory responses and health problems. In this study, we demonstrate that silk fibroin microspheres (SFMPs) assembled from regenerated silk fibroin (SF) could scavenge free radicals while preventing UV irradiation and thus present a promising sunscreen. The SFMP reflected more UV light than SF and presented a higher stability than that of organic commercial sunscreens. In vitro analysis proved that SFMP could more efficiently scavenge the hydroxy radical and reduce the intracellular reactive oxygen than titanium dioxide (TiO2). In vivo experiments exhibited that SFMP provided stronger skin protection against UV irradiation than commercial sunscreens and TiO2. Furthermore, SFMP treatment significantly inhibited the skin inflammatory response. This work suggests that the SFMP has great potential to be developed into a biosafe sunscreen.


Assuntos
Bombyx , Fibroínas , Animais , Fibroínas/farmacologia , Protetores Solares/farmacologia , Microesferas , Radicais Livres , Seda
5.
Adv Mater ; : e2401334, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38491868

RESUMO

Nanotechnology-based approaches are promising for the treatment of musculoskeletal (MSK) disorders, which present significant clinical burdens and challenges, but their clinical translation requires a deep understanding of the complex interplay between nanotechnology and MSK biology. Organ-on-a-chip (OoC) systems have emerged as an innovative and versatile microphysiological platform to replicate the dynamics of tissue microenvironment for studying nanotechnology-biology interactions. This review first covers recent advances and applications of MSK OoCs and their ability to mimic the biophysical and biochemical stimuli encountered by MSK tissues. Next, by integrating nanotechnology into MSK OoCs, cellular responses and tissue behaviors may be investigated by precisely controlling and manipulating the nanoscale environment. Analysis of MSK disease mechanisms, particularly bone, joint, and muscle tissue degeneration, and drug screening and development of personalized medicine may be greatly facilitated using MSK OoCs. Finally, future challenges and directions are outlined for the field, including advanced sensing technologies, integration of immune-active components, and enhancement of biomimetic functionality. By highlighting the emerging applications of MSK OoCs, this review aims to advance the understanding of the intricate nanotechnology-MSK biology interface and its significance in MSK disease management, and the development of innovative and personalized therapeutic and interventional strategies.

6.
ACS Appl Mater Interfaces ; 16(14): 17232-17241, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38554078

RESUMO

The increasing prevalence of bacterial multidrug antibiotic resistance has led to a serious threat to public health, emphasizing the urgent need for alternative antibacterial therapeutics. Lytic phages, a class of viruses that selectively infect and kill bacteria, offer promising potential as alternatives to antibiotics. However, injectable carriers with a desired release profile remain to be developed to deliver them to infection sites. To address this challenge, phage-loaded microparticles (Phage-MPs) have been developed to deliver phages to the infection site and release phages for an optimal therapeutic effect. The Phage-MPs are synthesized by allowing phages to be electrostatically attached onto the porous polyethylenimine-modified silk fibroin microparticles (SF-MPs). The high specific surface area of SF-MPs allows them to efficiently load phages, reaching about 1.25 × 1010 pfu per mg of microparticles. The Phage-MPs could release phages in a controlled manner to achieve potent antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). Unlike the diffuse biodistribution of free phages post-intraperitoneal injection, Phage-MPs could continuously release phages to effectively boost the local phage concentration at the bacterial infection site after they are intraperitoneally injected into an abdominal MRSA-infected mouse model. In a mouse abdominal MRSA infection model, Phage-MPs significantly reduce the bacterial load in major organs, achieving an efficient therapeutic effect. Furthermore, Phage-MPs demonstrate outstanding biocompatibility both in vitro and in vivo. Overall, our research lays the foundation for a new generation of phage-based therapies to combat antibiotic-resistant bacterial infections.


Assuntos
Bacteriófagos , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Camundongos , Animais , Distribuição Tecidual , Fagos de Staphylococcus , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
7.
J Nanobiotechnology ; 22(1): 111, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486273

RESUMO

Brain damage is a common tissue damage caused by trauma or diseases, which can be life-threatening. Stem cell implantation is an emerging strategy treating brain damage. The stem cell is commonly embedded in a matrix material for implantation, which protects stem cell and induces cell differentiation. Cell differentiation induction by this material is decisive in the effectiveness of this treatment strategy. In this work, we present an injectable fibroin/MXene conductive hydrogel as stem cell carrier, which further enables in-vivo electrical stimulation upon stem cells implanted into damaged brain tissue. Cell differentiation characterization of stem cell showed high effectiveness of electrical stimulation in this system, which is comparable to pure conductive membrane. Axon growth density of the newly differentiated neurons increased by 290% and axon length by 320%. In addition, unfavored astrocyte differentiation is minimized. The therapeutic effect of this system is proved through traumatic brain injury model on rats. Combined with in vivo electrical stimulation, cavities formation is reduced after traumatic brain injury, and rat motor function recovery is significantly promoted.


Assuntos
Bombyx , Lesões Encefálicas Traumáticas , Fibroínas , Células-Tronco Mesenquimais , Células-Tronco Neurais , Nitritos , Elementos de Transição , Ratos , Animais , Fibroínas/metabolismo , Fibroínas/farmacologia , Bombyx/metabolismo , Hidrogéis/farmacologia , Neurônios/metabolismo , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/metabolismo
8.
Int J Biol Macromol ; 263(Pt 2): 130373, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395280

RESUMO

The integration of liquid metal (LM) and regenerated silk fibroin (RSF) hydrogel holds great potential for achieving effective antibacterial wound treatment through the LM photothermal effect. However, the challenge of LM's uncontrollable shape-deformability hinders its stable application. To address this, we propose a straightforward and environmentally-friendly ice-bath ultrasonic treatment method to fabricate stable RSF-coated eutectic gallium indium (EGaIn) nanoparticles (RSF@EGaIn NPs). Additionally, a double-crosslinked hydrogel (RSF-P-EGaIn) is prepared by incorporating poly N-isopropyl acrylamide (PNIPAAm) and RSF@EGaIn NPs, leading to improved mechanical properties and temperature sensitivity. Our findings reveal that RSF@EGaIn NPs exhibit excellent stability, and the use of near-infrared (NIR) irradiation enhances the antibacterial behavior of RSF-P-EGaIn hydrogel in vivo. In fact, in vivo testing demonstrates that wounds treated with RSF-P-EGaIn hydrogel under NIR irradiation completely healed within 14 days post-trauma infection, with the formation of new skin and hair. Histological examination further indicates that RSF-P-EGaIn hydrogel promoted epithelialization and well-organized collagen deposition in the dermis. These promising results lay a solid foundation for the future development of drug release systems based on photothermal-responsive hydrogels utilizing RSF-P-EGaIn.


Assuntos
Anti-Infecciosos , Fibroínas , Nanopartículas Metálicas , Hidrogéis/farmacologia , Antibacterianos/farmacologia
9.
ChemSusChem ; : e202301549, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38298106

RESUMO

The improper and inadequate treatment of industrial, agricultural, and household wastewater exerts substantial pressure on the existing ecosystem and poses a serious threat to the health of both humans and animals. To address these issues, different types of materials have been employed to eradicate detrimental pollutants from wastewater and facilitate the reuse of water resources. Nevertheless, owing to the challenges associated with the degradation of these traditional materials post-use and their incompatibility with the environment, natural biopolymers have garnered considerable interest. Silk protein, as a biomacromolecule, exhibits advantageous characteristics including environmental friendliness, low carbon emissions, biodegradability, sustainability, and biocompatibility. Considering recent research findings, this comprehensive review outlines the structure and properties of silk proteins and offers a detailed overview of the manufacturing techniques employed in the production of silk-based materials (SBMs) spanning different forms. Furthermore, it conducts an in-depth analysis of the state-of-the-art SBMs for water treatment purposes, encompassing adsorption, catalysis, water disinfection, desalination, and biosensing. The review highlights the potential of SBMs in addressing the challenges of wastewater treatment and provides valuable insights into prospective avenues for further research.

10.
J Pharmacol Exp Ther ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272670

RESUMO

Therapeutic vaccines containing aluminum adjuvants have been widely used in the treatment of tumors due to their powerful immune-enhancing effects. However, the neurotoxicity of aluminum adjuvants with different physicochemical properties have not been completely elucidated. In this study, a library of engineered aluminum oxyhydroxide (EAOs) and aluminum hydroxyphosphate (EAHPs) nanoparticles was synthesized to determine their neurotoxicity in vitro It was demonstrated that the surface charge of EAHPs and size of EAOs did not affect the cytotoxicity in N9, bEnd.3 and HT22 cells, however, soluble aluminum ions trigger the cytotoxicity in three different cell lines. Moreover, soluble aluminum ions induce apoptosis in N9 cells, and further mechanistic studies demonstrated that this apoptosis was mediated by mitochondrial reactive oxygen species (mtROS) generation and mitochondrial membrane potential (MMP) loss. This study identifies the safety profile of aluminum-containing salts as adjuvants in the nervous system for use in a therapeutic cancer vaccine, and provides novel design strategies for their safer applications. Significance Statement Although therapeutic cancer vaccines containing aluminum-based nanoparticle adjuvants have been widely used in the treatment of tumors due to their powerful immune-enhancing effects, the neurotoxicity of such nanoparticle adjuvants is still unclear. Thus, this work fills this gap by engineering aluminum-based nanoparticle adjuvants with different surface charges and sizes to elucidate their neurotoxicity in the context of cancer vaccines.

11.
Small ; : e2309364, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225691

RESUMO

Development of stimulus-responsive materials is crucial for novel soft actuators. Among these actuators, the moisture-responsive actuators are known for their accessibility, eco-friendliness, and robust regenerative attributes. A major challenge of moisture-responsive soft actuators (MRSAs) is achieving significant bending curvature within short response times. Many plants naturally perform large deformation through a layered hierarchical structure in response to moisture stimuli. Drawing inspiration from the bionic structure of Delosperma nakurense (D. nakurense) seed capsule, here the fabrication of an ultrafast bi-directional bending MRSAs is reported. Combining a superfine silk fibroin rod (SFR) modified graphene oxide (GO) moisture-responsive layer with a moisture-inert layer of reduced graphene oxide (RGO), this actuator demonstrated large bi-directional bending deformation (-4.06 ± 0.09 to 10.44 ± 0.00 cm-1 ) and ultrafast bending rates (7.06 cm-1  s-1 ). The high deformation rate is achieved by incorporating the SFR into the moisture-responsive layers, facilitating rapid water transmission within the interlayer structure. The complex yet predictable deformations of this actuator are demonstrated that can be utilized in smart switch, robotic arms, and walking device. The proposed SFR modification method is simple and versatile, enhancing the functionality of hierarchical layered actuators. It holds the potential to advance intelligent soft robots for application in confined environments.

12.
Cancer Lett ; 580: 216481, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37972701

RESUMO

Small extracellular vesicles (sEVs) such as exosomes are nanoscale membranous particles (<200 nm) that have emerged as crucial targets for liquid biopsy and as promising drug delivery vehicles. They play a significant role in tumor progression as intercellular messengers. They can serve as biomarkers for tumor diagnosis and as drug carriers for cancer treatment. This article reviews recent studies on sEVs in oncology and explores their potential as biomarkers and drug delivery vehicles. Following tumorigenesis, sEVs in the tumor microenvironment (TME) and circulatory system undergo modifications to regulate various events in the TME, including angiogenesis, epithelial-mesenchymal transition (EMT), and tumor immunity, with either pro- or anti-tumor effects. sEVs have been investigated for use as diagnostic and prognostic biomarkers for a variety of tumors, including lung cancer, melanoma, breast cancer, prostate cancer, and hepatocellular carcinoma. sEVs can be used for cancer therapy by packaging drugs or proteins into them through pre- and post-isolation modification techniques. The clinical trials of sEVs as biomarkers and drug carriers are also summarized. Finally, the challenges in the use of sEVs are described and the possible approaches to tackling them are suggested. Overall, sEVs will advance the precision cancer medicine and has shown great potential in clinical applications.


Assuntos
Vesículas Extracelulares , Neoplasias Hepáticas , Neoplasias Pulmonares , Masculino , Humanos , Portadores de Fármacos , Biomarcadores , Microambiente Tumoral
13.
Cancer Lett ; 578: 216442, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37852428

RESUMO

Hepatocellular carcinoma (HCC) is often associated with poor outcomes due to lung metastasis. ICAM-1+ circulating tumor cells, termed circulating cancer stem cells (CCSCs), possess stem cell-like characteristics. However, it is still unexplored how their presence indicates lung metastasis tendency, and particularly, what mechanism drives their lung metastasis. Here, we demonstrated that a preoperative CCSC count in 5 mL of blood (CCSC5) of >3 was a risk factor for lung metastasis in clinical HCC patients. The CSCs overexpressed with circ-CDYL entered the bloodstream and developed lung metastases in mice. Mechanistically, circ-CDYL promoted COL14A1 expression and thus ERK signaling to facilitate epithelial-mesenchymal transition. Furthermore, we uncovered that an RNA-binding protein, EEF1A2, acted as a novel transcriptional (co-) factor to cooperate with circ-CDYL and initiate COL14A1 transcription. A high circ-CDYL level is caused by HIF-1⍺-mediated transcriptional upregulation of its parental gene CDYL and splicing factor EIF4A3 under a hypoxia microenvironment. Hence, the hypoxia microenvironment enables the high-tendency lung metastasis of ICAM-1+ CCSCs through the HIF-1⍺/circ-CDYL-EEF1A2/COL14A1 axis, potentially allowing clinicians to preoperatively detect ICAM-1+ CCSCs as a real-time biomarker for precisely deciding HCC treatment strategies.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias Pulmonares , MicroRNAs , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Linhagem Celular Tumoral , Neoplasias Pulmonares/metabolismo , Hipóxia/genética , Células-Tronco Neoplásicas/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Proliferação de Células , Microambiente Tumoral , Hidroliases/genética , Hidroliases/metabolismo , Proteínas Correpressoras/genética
14.
Mater Horiz ; 10(11): 4903-4913, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37750251

RESUMO

Conversion between mechanical and electrical cues is usually considered unidirectional in cells with cardiomyocytes being an exception. Here, we discover a material-induced external electric field (Eex) triggers an electro-mechanical coupling feedback loop in cells other than cardiomyocytes, human umbilical vein endothelial cells (HUVECs), by opening their mechanosensitive Piezo1 channels. When HUVECs are cultured on patterned piezoelectric materials, the materials generate Eex (confined at the cellular scale) to polarize intracellular calcium ions ([Ca2+]i), forming a built-in electric field (Ein) opposing Eex. Furthermore, the [Ca2+]i polarization stimulates HUVECs to shrink their cytoskeletons, activating Piezo1 channels to induce influx of extracellular Ca2+ that gradually increases Ein to balance Eex. Such an electro-mechanical coupling feedback loop directs pre-angiogenic activities such as alignment, elongation, and migration of HUVECs. Activated calcium dynamics during the coupling further modulate the downstream angiogenesis-inducing eNOS/NO pathway. These findings lay a foundation for developing new ways of electrical stimulation-based disease treatment.


Assuntos
Cálcio , Humanos , Cálcio/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Cultivadas , Íons/metabolismo
15.
Adv Sci (Weinh) ; 10(28): e2302700, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37610511

RESUMO

Multimodal therapy requires effective drug carriers that can deliver multiple drugs to specific locations in a controlled manner. Here, the study presents a novel nanoplatform constructed using zeolitic imidazolate framework-8 (ZIF-8), a nanoscale metal-organic framework nucleated under the mediation of silk fibroin (SF). The nanoplatform is modified with the newly discovered MCF-7 breast tumor-targeting peptide, AREYGTRFSLIGGYR (AR peptide). Indocyanine green (ICG) and doxorubicin (DOX) are loaded onto the nanoplatform with high drug encapsulation efficiency (>95%). ICG enables the resultant nanoparticles (NPs), called AR-ZS/ID-P, to release reactive oxygen species for photodynamic therapy (PDT) and heat for photothermal therapy (PTT) under near-infrared (NIR) irradiation, promoting NIR fluorescence and thermal imaging to guide DOX-induced chemotherapy. Additionally, the controlled release of both ICG and DOX at acidic tumor conditions due to the dissolution of ZIF-8 provides a drug-targeting mechanism in addition to the AR peptide. When intravenously injected, AR-ZS/ID-P NPs specifically target breast tumors and exhibit higher anticancer efficacy than other groups through ICG-enabled PDT and PTT and DOX-derived chemotherapy, without inducing side effects. The results demonstrate that AR-ZS/ID-P NPs are a promising multimodal theranostic nanoplatform with maximal therapeutic efficacy and minimal side effects for targeted and controllable drug delivery.

16.
RSC Adv ; 13(29): 20229-20234, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37416905

RESUMO

Opportunistic foodborne pathogens such as Staphylococcus aureus (S. aureus) can cause a wide variety of threats to public health. There is an urgent clinical need for a fast, simple, low-cost, and sensitive method. Here, we designed a fluorescence-based aptamer biosensor (aptasensor) for S. aureus detection using core-shell structured upconversion nanoparticles (CS-UCNPs) as a beacon. A S. aureus-specific aptamer was modified on the surface of CS-UCNPs for binding pathogens. The S. aureus bound to CS-UCNPs can then be isolated from the detection system by simple low-speed centrifugation. Thus, an aptasensor was successfully established for the detection of S. aureus. The fluorescence intensity of CS-UCNPs correlated with the concentration of S. aureus within the range of 6.36 × 102 to 6.36 × 108 CFU mL-1, resulting in the detected limit of S. aureus being 60 CFU mL-1. The aptasensor performed well in real food samples (milk) with a detection limit of 146 CFU mL-1 for S. aureus. Furthermore, we applied our aptasensor in chicken muscles for S. aureus detection, and compared it with the plate count gold standard method. There was no significant difference between our aptasensor and the plate count method within the detected limit, while the time for the aptasensor (0.58 h) was shorter than that of the plate count method (3-4 d). Therefore, we succeeded in the design of a simple, sensitive and fast CS-UCNPs aptasensor for S. aureus detection. This aptasensor system would have the potential for the detection of a wide range of bacterial species by switching the corresponding aptamer.

17.
Biosens Bioelectron ; 237: 115423, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37311406

RESUMO

The rapid and sensitive detection of pathogenic viruses is important for controlling pandemics. Herein, a rapid, ultrasensitive, optical biosensing scheme was developed to detect avian influenza virus H9N2 using a genetically engineered filamentous M13 phage probe. The M13 phage was genetically engineered to bear an H9N2-binding peptide (H9N2BP) at the tip and a gold nanoparticle (AuNP)-binding peptide (AuBP) on the sidewall to form an engineered phage nanofiber, M13@H9N2BP@AuBP. Simulated modelling showed that M13@H9N2BP@AuBP enabled a 40-fold enhancement of the electric field enhancement in surface plasmon resonance (SPR) compared to conventional AuNPs. Experimentally, this signal enhancement scheme was employed for detecting H9N2 particles with a sensitivity down to 6.3 copies/mL (1.04 × 10-5 fM). The phage-based SPR scheme can detect H9N2 viruses in real allantoic samples within 10 min, even at very low concentrations beyond the detection limit of quantitative polymerase chain reaction (qPCR). Moreover, after capturing the H9N2 viruses on the sensor chip, the H9N2-binding phage nanofibers can be quantitatively converted into plaques that are visible to the naked eye for further quantification, thereby allowing us to enumerate the H9N2 virus particles through a second mode to cross-validate the SPR results. This novel phage-based biosensing strategy can be employed to detect other pathogens because the H9N2-binding peptides can be easily switched with other pathogen-binding peptides using phage display technology.


Assuntos
Bacteriófagos , Técnicas Biossensoriais , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Nanopartículas Metálicas , Nanofibras , Animais , Ouro , Influenza Aviária/diagnóstico , Peptídeos
18.
Talanta ; 260: 124602, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37148690

RESUMO

Molecular beacons (MBs) are DNA-based probes that detect DNA or RNA fragments and hold promise for monitoring diseases and studying protein-nucleic acid interactions. MBs usually use fluorescent molecules as fluorophores for reporting the target detection event. However, the fluorescence of the traditional fluorescent molecules can bleach and even be interfered with the background autofluorescence, reducing the detection performance. Hence, we propose to develop a nanoparticle-based MB (NPMB) that uses upconversion nanoparticles (UCNPs) as a fluorophore, which can be excited by near-infrared light to avoid background autofluorescence and thus enables us to detect small RNA from complicated clinical samples such as plasma. Specifically, we employ a DNA hairpin structure, with one segment complementary to the target RNA, to position a quencher (gold nanoparticles, Au NPs) and the UCNP fluorophore in close proximity, leading to the quenching of the fluorescence of UCNPs in the absence of a target nucleic acid. Only when the hairpin structure is complementary with the detection target, will the hairpin structure be destroyed to separate Au NPs and UCNPs, resulting in the instant recovery of the fluorescence signal of UCNPs and the consequent ultrasensitive detection of the target concentrations. The NPMB has an ultra-low background signal because UCNPs can be excited with NIR light with a wavelength longer than the emitted visible light. We demonstrate that the NPMB can successfully detect a small (22-nt) RNA (using a microRNA cancer biomarker, miR-21, as an example) and a small single-stranded DNA (complementing the cDNA of miR-21) in aqueous solutions from 1 aM to 1 pM, with the linear detection range being 10 aM to 1 pM for the former and 1 aM to 100 fM for the latter. We further show that the NPMB can be used to detect unpurified small RNA (miR-21) in clinical samples such as plasma with the same detection region. Our work suggests that the NPMB is a promising label-free and purification-free method for detecting small nucleic acid biomarkers in clinical samples with a detection limit as low as the aM level.


Assuntos
Nanopartículas Metálicas , MicroRNAs , Nanopartículas Metálicas/química , Ouro/química , Fluorescência , DNA Complementar , Corantes Fluorescentes
19.
Adv Healthc Mater ; 12(22): e2203004, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37199479

RESUMO

Insoluble metal bisphosphonates (BPs) are considered an ideal alternative to the soluble counterparts in regenerative medicine due to their increased BP release profile, but still present undesired properties (e.g., low stability, uncontrolled degradation, and poor biocompatibility). Through a simple crystallization on a solid calcium hydroxyapatite (HA)-based substrate from a BP precursor solution in 30 days, a series of insoluble calcium BP (CaBP) crystals are developed. These crystals, including calcium alendronate (CaAln), calcium pamidronate (CaPam), calcium incadronate (CaInc), calcium risedronate (CaRis), calcium zoledronate (CaZol), and calcium di-minodronate (Ca(Min)2 ), present high purity, regular morphologies and excellent biodegradability. It is demonstrated that these CaBPs can induce osteogenic differentiation of adipose-derived mesenchymal stem cells in vitro in the absence of other osteogenic inducers. It is further found that CaBP induces bone formation more effectively in a femur defect rabbit model in three months but with a lower in vivo hematotoxicity than the clinically used HA during osteogenesis. It is believed that these desired biological properties arise from the capability of the insoluble CaBPs in releasing BPs in a sustained manner for stimulating osteogenesis. This work provides a significant strategy for turning CaBPs into novel biomaterials for tissue regeneration and demonstrates their great potential in the clinic.


Assuntos
Materiais Biocompatíveis , Osteogênese , Animais , Coelhos , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Cálcio , Cristalização , Difosfonatos/farmacologia , Difosfonatos/química , Durapatita/química , Regeneração Óssea , Diferenciação Celular
20.
ACS Appl Mater Interfaces ; 15(6): 7673-7685, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36735224

RESUMO

Peptides can introduce new functions to biomaterials but their immobilization usually relies on inefficient physical adsorption or tedious chemical conjugation. Using the Bombyx mori silk fibroin (SF) membrane (SFm) as a model biomaterial, here, we demonstrate a universal strategy for discovering new peptides that can "stick" to a biomaterial to functionalize it. Specifically, two peptide motifs, one screened by phage display biopanning for binding to the biomaterial (i.e., SF) and another derived from an osteogenic growth factor (i.e., bone morphogenetic protein-2), are fused into a new chimeric peptide that can bind to SFm for more efficient osteogenesis. Theoretical simulations and experimental assays confirm that the chimeric peptide binds to SF with high affinity, facilely achieving its immobilization onto SFm. The peptide enables SFm to effectively induce osteogenic differentiation of human mesenchymal stem cells (MSCs) even without other osteogenic inducers and efficiently stimulate bone regeneration in a subcutaneous rat model in 8 weeks, even without MSC seeding, while not causing inflammatory responses. Since biomaterial-binding peptides can be readily screened using phage display and functional peptides can be generated from growth factors, our work suggests a universal strategy for combining them to seek new peptides for binding and functionalizing biomaterials.


Assuntos
Fibroínas , Células-Tronco Mesenquimais , Humanos , Ratos , Animais , Osteogênese , Materiais Biocompatíveis/farmacologia , Fibroínas/farmacologia , Peptídeos/farmacologia , Diferenciação Celular , Seda/farmacologia , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA